2x^2+4x^2=320

Simple and best practice solution for 2x^2+4x^2=320 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+4x^2=320 equation:



2x^2+4x^2=320
We move all terms to the left:
2x^2+4x^2-(320)=0
We add all the numbers together, and all the variables
6x^2-320=0
a = 6; b = 0; c = -320;
Δ = b2-4ac
Δ = 02-4·6·(-320)
Δ = 7680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7680}=\sqrt{256*30}=\sqrt{256}*\sqrt{30}=16\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{30}}{2*6}=\frac{0-16\sqrt{30}}{12} =-\frac{16\sqrt{30}}{12} =-\frac{4\sqrt{30}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{30}}{2*6}=\frac{0+16\sqrt{30}}{12} =\frac{16\sqrt{30}}{12} =\frac{4\sqrt{30}}{3} $

See similar equations:

| 15x+30=11x–10 | | 12=g/2–7 | | 12=g2–7 | | x+4.6=3.3(x-2.3) | | 13=7–4p | | -4(3x+1)+5.4x=2.6x-1 | | 3g=11 | | x6x+7=16 | | 6x-4(4x)+10=3(5x+5) | | 12+m/6=14 | | 68-2(x-5)+5x=-4 | | 9h-3=105 | | 14x+18=102 | | W(t)=220 | | 8x+4=4(7x+21) | | 10+m=95 | | x/2-1/5=x/2+14 | | 5y+12=3y+32 | | u−28=22 | | 4.5x+x-3.1=1.5x+5.9 | | 4.5+x-3.1=1.5x+5.9 | | 7x-17=-31 | | 48x+96=912 | | 4x-22+10x-4=x+11 | | 4x-22=10x-4+x+11 | | -3(x-4)-1=x+4 | | 13x5=3/2 | | 5(3x-2)+2=3x-20 | | 2y+3+19=0 | | 5(2x-3)=2-(2x-9) | | 7x-6-5x=10 | | 5x-31=3(2x-4)-10 |

Equations solver categories